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Abstract

Over the last twenty-five years, climate scientists working on the attribution of
climate change to humans have developed increasingly sophisticated statistical
models in a process that can be understood as a kind of calibration: the grad-
ual changes to the statistical models employed in attribution studies served
as iterative revisions to a measurement(-like) procedure motivated primarily
by the aim of neutralizing particularly troublesome sources of error or uncer-
tainty. This practice is in keeping with recent work on the evaluation of models
more generally that views models as tools for particular tasks: what drives the
process is the desire for models that provide more reliable grounds for inference
rather than accuracy to the underlying mechanisms of data-generation.
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0 Introduction

One of the major projects of climate science is what’s called “attribution”: determin-
ing how factors such as increasing greenhouse gas concentrations have contributed
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to global warming. Attribution involves what looks like a kind of measurement.1

Interventions on the environment using physical instruments—i.e., thermometers—
generate instrumental readings, which are collected into data sets, and then measure-
ment outcomes—the actual estimate for the contribution of a particular factor—are
inferred from these data sets. This inference relies heavily on both background knowl-
edge (in the form of climate models) and statistics, the latter of which plays a par-
ticularly important role in attribution studies due to the high levels of noise present
in climate data.

Though the basic scaffolding of this measurement-like procedure has remained
largely unchanged over the last thirty years, the details have not. Indeed, there have
been changes to all of the elements outlined above: climate scientists have gathered
more data, built more complex and accurate models, and developed new statisti-
cal techniques. The first two of these changes should be familiar—gathering more
data and building more accurate theoretical constructs are (relatively) well under-
stood parts of the scientific process. The third is less so. How should we understand
changes in statistical techniques? What makes one statistical technique “better” than
another in the context of climate science? And how does the general desire for better
statistical techniques get translated into specific changes?

The present paper tackles these questions. I argue that the changes to statistical
techniques found in attribution studies are akin to what’s called “calibration” in phi-
losophy of measurement, where an instrument or model employed in a measurement
procedure is altered with the goal of producing measurement outcomes that are more
precise, more accurate, or both.

In more detail, I argue for two conclusions. First, we should understand the
changes to statistical techniques as alterations to an “instrument”—what statisti-
cians call the “statistical model”—similar to paradigm cases of calibration found
in discussions such as Bokulich (2020a) and Tal (2017). Though my examples in-
volve changes to the inferential tools involved in measurement rather than the more
familiar changes to physical instruments, I show that they largely have the same
motivation and epistemological implications. Second, statistical models should be
judged according to what I’ll call an “artefactual” view (borrowing the term from
Knuuttila 2011) according to which the new model is better than the old insofar as
it is more reliable in licensing accurate inferences (rather than, say, insofar as it ac-
curately represents any real process in the world). This artefactual view both aligns
nicely with previous work on model evaluation generally and helps explain many of

1Following Parker (2017, 2020a), I’m going to put aside the question of whether attribution
is “really” measurement in some deep sense; my interest here lies what’s revealed by examining
attribution studies in climate science through the lens of the philosophy of measurement.
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the details of the calibration process.
In outline, the paper begins with some basic background on attribution and the

technical difficulties that arise in the science (§1). I then detail how climate scientists
have refined the statistical models employed in attribution, and how these refinements
have both alleviated the original difficulties and introduced further complications of
their own (§§2,3). The penultimate section argues that we should understand these
cases in terms of calibration, or at least that the changes in question are akin to
paradigm cases of calibration in important respects (§4). The final one argues that
the proper way to evaluate statistical models—and thus the success of the calibration
process—is through an “artefactual” lens (§5).

1 Before attribution: the statistics of detection

This section provides a brief conceptual and technical background for discussing
the use of statistics in attribution. Throughout, I endeavor to present the relatively
advanced statistical concepts in as close to plain English as possible. As we’ll see,
however, much of what is philosophically interesting about this case is to be found
in the details, and so a certain amount of engagement with the technicalities is
unavoidable.

It will be helpful to begin by saying a little bit about measurements. As is often the
case in philosophy, there is no entirely uncontroversial definition of measurement (Tal
2020). In what follows, I’m going to adopt a relatively loose interpretation inspired
by recent “model-based” accounts: say that a procedure is a measurement (or is
“measurement-like”) when it involves assigning values to parameters or quantities
of interest on the basis of interactions between physical instruments and the system
or target to be represented (compare Tal 2020, §7). What makes this view “model-
based” is the recognition that the assignment of values cannot be conducted without
a (sometimes tacit) model of the interaction(s) in question. That is, a scientist is
only justified in drawing inferences from instrumental readings (e.g., the height of
a column of fluid in a thermometer) to the value of a quantity of interest (e.g., the
temperature) given background assumptions concerning the accuracy and precision
of the thermometer.

In climate science, “attribution” refers to the science of determining the causes of
various climate changes and events. Many attribution studies take on a measurement-
like form.2 Climate scientists gather instrumental readings of quantities such as tem-

2To date, attribution has received less attention than prediction in the philosophical literature,
but see Parker (2010) for an overview or Dethier (2022) for a discussion of attribution as a case

3



perature, precipitation, humidity, etc. taken from around the globe.3 A measurement
outcome, usually an estimate for the contribution of a particular causal factor such
as greenhouse gases or the combined anthropogenic influence, is then estimated on
the basis of this data and information from climate models. In the cases that we’ll
be looking at below, for instance, the typical attribution study will conclude by pro-
viding an ◦C estimate for the total contribution of humans to global warming trends
over a time period such as 1951 to 2010.

More technically, let O represent the observed climate data. We can think of O
as a matrix in which each column is a climate variable O1(t) ... On(t) representing
(e.g.) the change in temperature at a particular measurement location or device over
time. We suppose that to a first approximation this data can be decomposed linearly
into a response due to “forcings”—that is, external causes such as an increase in
greenhouse gas concentrations—represented by OS (for “signal”) and the “internal
variation” of the system (ON , for “noise”) like so:

O = OS +ON (1)

Intuitively, attribution studies aim to isolate OS and to determine which of the vari-
ous potential hypotheses concerning the origins of climate change are compatible with
it; the more limited “detection” studies are limited to simply determining whether
OS is non-zero.

Equation (1) provides the bare-bones structure of what statisticians call a “statis-
tical model.” Statistical models aim to represent the relationship between the data
(in this case, O) and the target of the inference (OS).

4 A statistical model is es-
sential to any inferential use of statistics: though the statistical models of Bayesian
and classical statistics differ in various ways, neither can get off the ground without
a statistical model of some sort. At minimum, we need some representation of the
probabilistic relationship between the data and various hypotheses (i.e., the likeli-
hood ratio).5

study in the use of computer simulations.
3Note that these readings are often already heavily processed before the study even begins; for

discussion, see Edwards (2010), Lloyd (2012), and Parker (2016).
4In this respect, the category combines the traditional philosophical distinction between “models

of data” and “models of experiment” (Suppes 1962). See also Mayo (1996, 128–41) and Spanos
(2006).

5Formally, we can think of this statistical model as consisting of at least following three com-
ponents: (1) a hypothesis space, (2) a sample space that characterizes the nature of the possible
evidence, and (3) a probability density function that gives the likelihood of elements of the latter
conditional on the former. See Sprenger (2019) for extended discussion of the third requirement.
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Statisticians will be the first to tell you that statistical models are often idealized:
the famous quip that “all models are wrong, but some are useful” (Box 1979) is
originally owed to a statistician. The statistical models employed in early detection
studies were heavily idealized. Essentially, we can think of the relevant statistical
models as consisting of two assumptions about our data set, O. First, the assumption
that the distribution of a change in temperature throughout the world is effectively
random, meaning that a change in temperature should show up primarily in the mean
global temperature, which we can call Ō. WhereO is an n-dimensional matrix, Ō is a
single column; for each time, we’ve averaged the Oi variables, yielding a much simpler
statistic. Second, the assumption that the behavior of the global mean temperature
can be decomposed into the effects of warming (if they exist) and random noise, or:

Ō = OS + v (2)

where

v ∼ N (0, σ2) (3)

which says that the distribution of the global mean temperature over time will behave
like a normal distribution centered on the function OS with standard deviation σ.6

While this statistical model is heavily idealized—we’ve known since before the
first high-quality detection studies were conducted that changes in temperature can-
not be expected to be randomly distributed—introducing these idealizations mas-
sively simplifies the problem of trying to detect climate change. The first assumption
justifies reducing our extremely complicated data set to a single “detector” statistic,
namely the global mean temperature Ō; the second warrants the use of standard χ2

tests to determine whether Ō is consistent with the null hypothesis that there has
been no externally forced change in climate. And though the resulting tests rely on
an idealized statistical model, they are arguably reliable enough for the purposes of
detecting the existence of climate change.

Unfortunately, detection is not attribution: that there is some trend doesn’t tell us
whether that trend is attributable to (say) increases in greenhouse gas concentrations.
The problem is that different potential explanations of warming have largely the
same implications for mean surface temperatures, making it difficult to distinguish
between different hypotheses using only this data. By contrast, these hypotheses
differ more dramatically in their implications for how changes in temperature are to
be distributed both across regions and through time. Roughly speaking, for instance,

6Of course, actual detection studies often employed various checks on these assumptions. See
Santer et al. (1996) for an overview.
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an increase in the sun’s energy output will have a larger warming effect on the upper
atmosphere, while an increase in CO2 concentrations will trap heat lower down. To
distinguish between these two hypotheses, therefore, the averaging approach surveyed
in this section is a hindrance: it would be helpful to find a way of organizing the data
that allowed for more detailed comparisons. In what follows, I’ll outline how the
statistical model used in detection studies has been successively refined in two major
dimensions to allow for the proper attribution of climate change to humans.

2 From averaging to regularization

The first major innovation that allowed for the development of attribution studies is
a method for generating alternative detector statistics that carry more information
concerning the different potential explanations of climate change than the mean
global temperature does. This method is commonly called “fingerprinting” and was
introduced to climate science by a series of theoretical papers in the 80s and early
90s.7

It’s helpful to begin by describing what we want. So call our eventual detector
statistic D, and suppose that it too can be decomposed into a signal component DS

and a noise component DN . What we’re aiming for is a statistic with the maximal
ratio of signal to noise—essentially, we want to isolate that part of the data where
the signal is most likely to be visible if and only if it exists. Letting D̄N indicate the
average value of DN , this intuitive idea can be expressed in terms of maximizing the
ratio between DS and D̄N .

To find the appropriate detector statistic, we need information about the char-
acter of the expected signal and noise patterns; to identify where the signal is likely
to be, we need to know what it looks like. This information is usually provided by
climate models. More precisely, climate models provide two crucial pieces of infor-
mation. First, the estimated signal, which I’ll represent by MS to indicate that it is
estimated using climate models. This vector is used as a “weight” on the data: the
more an element is in the expected direction of the signal, the more we want our
detector statistic to focus on it. Second, the estimated internal variation of the sys-
tem, given by a covariance matrix ΣM (a covariance matrix is just the n-dimensional
generalization of the variance term σ2). Unlike what’s true regarding the direction of
signal, we want to focus as little as possible on areas with high (expected) variation,
meaning that the data is weighted by the inverse of the covariance matrix (Σ−1

M ) so

7In what follows I rely in particular on the Nobel prize-winning work of Hasselmann (1993,
1997). For an introduction to the relevant statistical principles, see von Storch and Zwiers (1999).
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as to de-emphasize those areas in which variance is high.
If the climate models are accurate in their representations of the signal and the

noise, applying these weights to the data will yield the best detector statistic for
testing the existence and strength of the signal. More precisely, if we define the
detector statistic D by applying the weights to the data like so

D = Σ−1
MMSO (4)

the result should maximize the signal-to-noise ratio.8 We can then use D in much the
same way that we employed the global mean temperature above, namely by applying
relatively simple statistical tests to determine whether or not it is compatible with
different hypotheses about the origins of climate change, including the null hypothesis
that D is entirely accounted for by random variation.

For present purposes, D can be thought of as a replacement for Ō; essentially,
the central move behind fingerprinting is a partial de-idealization of the statistical
model employed in detection studies. There, the statistical assumption was that any
change in temperature would be randomly distributed throughout the system and
so the relevant “place” to look for changes in temperature was the global average.
Climate scientists replaced this assumption by using climate models to determine
where the change in temperature will show up (if it exists). The result is a detector
statistic that should (and in fact does) allow for a more accurate picture of changes
in the climate than the average itself does.

Of course, as is often true of de-idealizations, the move to this more powerful
statistical model comes with its own complications. Most importantly, the detector
statisticD is generated using the assumption thatMS andΣM are perfectly accurate
representations of the signal and noise. This is obviously unrealistic, as Hasselmann
(1993) makes clear in his foundational paper laying out the technique. So while D
represents a substantial improvement on the basic averaging technique, it’s far from
perfect, and the subsequent two decades have seen a number of attempts to develop
practical means of generating improved detector statistics.

One of the proposed improvements has been widely adopted in the subsequent
literature. Recall: ΣM is an estimate of the true covariance matrix, and plays a cru-
cial role in picking out the detector statistic—more precisely, its inverse (Σ−1

M ) is
used to decrease the weight on elements of the data where variance is expected to
be high. The problem here is that the true covariance matrix is extremely large,
meaning that to generate an accurate estimate of it, large quantities of data are

8Usually, the relevant matrics are defined in such a way that they have to be transposed before
being used as weights. This complication makes little difference to the discussion, however, and so
I’ve forgone it in favor of terminological and conceptual simplicity.
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necessary. Without large quantities of data, the extreme elements of the covariance
matrix—the areas of highest and lowest variance—are liable to be misrepresented by
ΣM. This misrepresentation of the extreme elements leads the covariance matrix to
be “ill-conditioned,” meaning essentially that taking the inverse dramatically multi-
plies the degree of misrepresentation.9 The problem here is quite significant: Ribes,
Planton, and Terray (2013, 2821) estimate that at minimum 1 to 2 orders of magni-
tude more data points than are normally available would be required to generate a
“well-conditioned” estimate of even a reduced version of the matrix.

In early approaches, this problem was addressed by truncation: rather than at-
tempt to use the entire covariance matrix, the k most significant elements of it were
chosen instead. There are two main problems with employing truncation in this man-
ner. First, it weakens the test: truncation requires throwing away part of the signal
because it may be misleading when inverted. It would be preferable to strip away or
control for the effects of inversion in a manner that didn’t require throwing away the
data, or at least required throwing away much less of it. Second, the results are often
highly sensitive to the choice of k, which is at least somewhat arbitrary. In principle,
the bigger k is the better; truncating as little as possible means throwing away as
little of the data as possible. On the other hand, the bigger k is the more likely the
resulting matrix is to introduce serious and misleading errors when inverted. Climate
scientists developed various techniques for estimating the ideal truncation level in a
given data set, but these were considered imperfect and many of the bigger studies
ran tests at multiple truncation levels (see, e.g., Gillett et al. 2013).

To resolve these problems, Ribes, Azäıs, and Planton (2009) introduced a method
that they term “regularization.” Technically, their method can be understood in ei-
ther classical or Bayesian terms, but the conceptual insight is clearer from a Bayesian
perspective. Effectively, rather than truncating ΣM, they use ΣM as evidence for the
character of the true matrix; more precisely, they introduce a “prior” covariance
matrix—in practice, the prior that is used is the objective / (relatively) uninforma-
tive identity matrix I—and then generate a posterior estimate for the true covariance
matrix via a weighted updating procedure on ΣM. The result is usually expressed as

ΣI = γΣM + ρI (5)

where γ and ρ are weights that are set to minimize the expected error in Σ−1
I . Σ−1

I

then replaces Σ−1
M in the calculation of D.

Note that the result is still not a perfect representation of the true internal vari-
ation, let alone a perfect representation of the process by which O is actually gen-

9Though in fact there’s often not enough data to render it invertible at all, particularly without
substantial pre-processing.
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erated. The regularization procedure still requires us to treat the estimate—now ΣI

rather than ΣM—as though it were the real covariance matrix rather than an esti-
mate (that is, uncertainty about the accuracy of ΣI is not built into the statistical
test), and the new method does nothing to eliminate any actual sampling errors. But
regularization does allow climate scientists to make use of the information provided
by ΣM while worrying less about misestimating various statistical properties due
the mathematical instability of the inversion: because I is (nearly) uninformative
but well-behaved under inversion, using it as a prior and updating on ΣM yields a
result that contains (most of) the information included in ΣM without the features
that amplify inaccuracies when inverted.

So, to summarize: the major innovation that allowed climate scientists to not
just detect climate change but to test more complex hypotheses about its origins
was the introduction of fingerprinting techniques to generate a better model of the
relationship between climate change and the observed data—that is, to generate a
better statistical model. Further, as just emphasized, this central innovation did not
fix the procedure of estimating human contribution to climate change once and for
all. On the contrary, climate scientists continued to introduce refinements to the
fingerprinting technique with the aim of developing a statistical model that could be
used in more reliable and informative tests.

3 From consistency to regression

Where the first major innovation concerns the generation of the detector statistics,
the second concerns the relationship between the detector statistic and various hy-
potheses about the cause of climate change. Recall the basic statistical model used
in detection, in which the average global temperature is assumed to result from the
combination of the true change in the climate and random noise. This model only
allows for consistency checks: all that we can test is whether the observed data is
compatible with different hypotheses concerning the true change in temperature. In
practice, the most such studies were able to offer were qualitative determinations
that humans are responsible for climate change to some degree; they didn’t allow for
anything like reliable quantitative estimates of how responsible we are.

Soon after the introduction of fingerprinting, it was recognized that the increase
in information provided by the change in the detector statistic allowed for more
sophisticated and thus more informative tests. In particular, as emphasized by Allen
and Tett (1999) and Levine and Berliner (1999), we can use D not just to check
the consistency of the data with this or that hypothesis about the origins of climate
change, but also to run regressions to find the coefficients of best fit. That is, having
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selected a detector statistic D, we set that detector statistic equal to the contribution
of n causal factors like so:

D =
n∑
i

βiXi + vD (6)

where eachX term represents the signal of a particular causal factor (again estimated
using climate models), each β term the contribution of that factor, and vD is the
random noise term. Basically, we can think of the X terms like XGHG as representing
what would happen if D was entirely attributable to the increase in greenhouse gas
concentrations.10 The statistical test then concerns finding the β terms that maximize
the fit between the two sides of the equation using least-squares methods. In standard
tests, if βGHG = 1 in the equation of best fit, then the test says that greenhouse gases
account for 100% of the observed trends in the data. The change to a regression model
thus provides climate scientists with a means of testing not just whether humans are
responsible for climate change, but estimating how of much of it we’re responsible
for.

As with the fingerprinting technique described in the last section, this change
in statistical model does not yield anything like a perfect model. Recall that the
X terms are estimated using climate models, which we know can be inaccurate, a
situation described in the statistical literature using the term “measurement error”
(see Carroll et al. 2006). When there’s measurement error in a regression, there’s
liable to be errors in the estimates of the β terms: there will either be aspects of D
that we should attribute to a causal factor but that instead end up being registered
as noise or aspects of D that we should attribute to noise but are instead attributed
to a causal factor—and indeed, it’s likely that that there will be both. These sorts of
errors should be expected to crop up in attribution studies, even if we think that the
climate models that we use in estimating the signals are themselves perfectly accurate
representations of the laws of the climate system. After all, climate models—like the
climate itself—contain internal variation or noise, meaning that we should expect
that the signals generated by climate models will be noisy in much the same way
that the data are.

The solution that climate scientists developed is to move to a more complex form
of regression model originally introduced to attribution studies by Allen and Stott
(2003).11 So, keeping with our convention and letting MXi

and vXi
be the model-

10On the subjunctive character of this variable, compare Mayo (1996, 135–38).
11This form of regression model is often known as an “errors-in-variables” (EIV) model in the

statistical literature, but in attribution studies that terminology is typically used to refer to the
more complex models introduced by Huntingford et al. (2006).
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generated estimate of and internal noise term for the ith X respectively, the standard
presentation of the more complex regression problem is given by

D =
n∑
i

βi(MXi
− vXi

) + vD (7)

Essentially: to account for the fact that the estimates of the signals are possibly
inaccurate, an additional statistical model—here of the relationship between MXi

and Xi—is necessary. This additional statistical model is embedded in the first, and
more complicated statistical tests are required to account for the additional source
of variation (specifically, you need a “total” least squares algorithm rather than an
“ordinary” least squares algorithm).

As was true of fingerprinting, the move to a regression model was originally
motivated by the desire to answer questions that were previously outside of our reach.
Also as was true of fingerprinting, this initial innovation was quickly complicated by
refinements to the resulting statistical model aimed at improving the reliability of the
resulting tests. This process is ongoing, and is in no sense finished by the innovations
outlined here. For instance, it’s usually assumed that vXi

and vD have the same
“structure,” meaning that they differ by only by a scalar factor. This is explicitly
understood to be an idealization, in that it requires assuming that natural variation is
the “dominant” source of noise in both the estimate of Xi and D itself. To date, there
seems to be no consensus on the best method for improving the regression model
in this respect; Huntingford et al. (2006) introduce further variation terms into the
model determined using the distribution of simulation results given by ensembles of
climate models, while more recent studies have tended to follow Schurer et al. (2018)
in addressing this potential source of error by running multiple regressions using the
estimates from different climate models. Just as is true of fingerprinting methods, in
other words, climate scientists continue to study how to change the regression model
in a way that will result in more accurate and/or precise estimates of the relevant
quantities.

4 Calibrating statistical models

Before turning to the philosophical analysis, allow me to briefly review where we are.
The measurement(-like) procedure used in contemporary attribution studies consists
of the following. First, climate models are used to estimate various quantities of
interest. Two quantities in particular—the expected signal (MS) and a corrected
form of the inverse of the internal covariation matrix (Σ−1

I )—are used to generate
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a detector statistic (D) from the “raw” data (O). This statistic, estimates for the
signal of causal factors such as the change in greenhouse gas concentrations (MXi

),
and estimates for the remaining variation (vXi

and vD) are then used to estimate
the contribution (βi) of each causal factor. We can represent the resulting statistical
model as a single equation:

Σ−1
I MSO =

n∑
i

βi(MXi
− vXi

) + vD (8)

The presentation of this procedure and model are schematic, and there are various
important differences between studies that fit this general pattern.12 Nevertheless, the
schematic description above captures the most common approach used in attribution
studies in the late 2010s and—as we’ve seen—this approach relies on a statistical
model that is substantially more complex than the simple model that was common
in the early 1990s.

How should we understand the changes that are responsible for this increase
in complexity? My suggestion is that the evolution of the statistical model can be
understood as a kind of calibration. Of course, “calibration” can be used to refer to
many different kinds of procedures. So, for example, zero-ing out a scale before using
it to weigh something is a kind of calibration; it’s adjusting a tool so that the resulting
measurement outcome is more accurate. Similarly, climate scientists often talk about
tuning or calibrating their models, where they mean adjusting particular parameters
to generate the best fit with empirical data (Frisch 2015; Steele and Werndl 2013).

In the recent literature on philosophy of measurement, however, “calibration” is
taken to mean one of two things. For Tal (2017), the outcome of a calibration process
are functions that map instrumental readings (and potentially auxiliary parameters)
to outcomes and vice-versa, like so:

outcomes = f(readings, aux. parameters) (9)

The goal of calibration is to identify the right functions (Tal 2017, 33). Calibration,
in other words, is a matter of modeling a measurement process (Tal 2017, 34)

Bokulich (2020a), by contrast, explicitly departs from Tal’s conception in taking
“calibration” to be a matter not of modeling but of altering the measurement process.
That is, where Tal understand calibration to be a matter of identifying the function
(and auxiliary parameters) that relates readings to outcomes, for Bokulich it’s a
matter of fixing the measurement process to account for that information (Bokulich

12There are also quite a few studies that have suggested alterations to it; see, e.g., Hannart (2016),
Katzfuss, Hammerling, and Smith (2017), Ribes, Qasmi, and Gillett (2021), and Ribes et al. (2017).
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2020a, 430). To make the contrast concrete, consider an adjustment like zero-ing out
a scale. Neither Bokulich nor Tal considers this kind of adjustment to be an instance
of calibration in their preferred sense. For Tal, calibration is determining how the
readings on the scale relate to the target quantity (weight). In particular, calibration
is determining that the reading on the scale is equal to the weight of the object only
when the auxiliary parameters are fixed in the right way—i.e., when the starting
reading is equal to zero. For Bokulich, gathering this information is an importantly
different step from putting it into practice; she uses “calibration” to refer to the step
of introducing changes to the measurement process of the basis of this information.
On her approach, therefore, calibration would be introducing the step “zero out the
scale” into the measurement procedure.

In what follows, I’m going to adopt Bokulich’s understanding of “calibration”—to
my eyes, what’s interesting about the attribution case outlined above are the changes
that have been made to the process, meaning that Bokulich’s approach is more likely
to give us insight into attribution. As such, I’ll understand calibration to be any
change to either a physical process or the means of inferring outcomes from the indi-
cations that are generated by the physical process that aims making the procedure
as a whole deliver more reliable results (compare Bokulich 2020a, 431). Note that in
this sense, calibration can either operate at the individual level—changing the way
that an individual calculates a particular outcome in particular setting—or a more
social one, as in many of examples cited by Bokulich and Tal where the calibration
process results in setting new measurement standards for the entire field. It is also
(partly as a consequence) often temporally extended and iterative: frequently used
measurement procedures are being consistently updated and refined to improve their
accuracy and precision.13

In arguing for the thesis that the changes detailed above can be considered a kind
of calibration, it will be helpful to have a paradigm case on the table for compari-
son. So consider Bokulich’s discussion of calibration in carbon dating. As Bokulich
(2020a, 437) recounts, initial carbon dating projects were based on the assumption
of a constant atmospheric concentration of the carbon isotope 14C. Of course, this
assumption is false, but difficult to do away with: in order to determine how 14C con-
centrations differ with time, one needs an independent means of measuring the age of
various objects.14 Estimates for how 14C concentrations have changed are provided

13I’m assuming that the terms “accuracy” and “precision” are well-understood; see Bokulich
(2020a) for a discussion of how these terms are typically used in philosophy of measurement. Fol-
lowing Bokulich, I’ll also sometimes adopt the convention of using “reliable” to refer to procedures
that generate results that are both accurate and precise.

14Chang (2004) contains discussion of a virtually identical problem in the context of temperature
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by the combined evidence from tree rings (used to estimate more recent changes)
and lake fossils (used to estimate more ancient changes). In other words, contem-
porary carbon dating procedures are (partially) de-idealized relative to the original
carbon dating methods in the sense that they employ a more complex representation
of atmospheric 14C concentrations. As Bokulich (2020a, 440) stresses, however, this
de-idealization comes with a cost in that the new method trades increased accuracy
for additional potential sources of error: the accuracy of carbon dating procedures is
now reliant on the accuracy of tree ring and fossil dating procedures. Because the de-
idealization is only partial—and because the other dating procedures are themselves
imperfect—the calibration of carbon dating remains an ongoing process.

Both of the two major examples outlined above share deep parallels with the
carbon dating case. I’ll discuss each in turn.

Fingerprinting. As we saw in section 1, early attempts to measure the human
contribution to climate change began with a simple but false assumption—namely
that temperature changes are randomly distributed—comparable to the assumption
that 14C is constant over time. This assumption was then replaced with a repre-
sentation of how temperature changes are distributed derived from “independent”
sources of evidence, namely climate models. As in the case of carbon dating, this par-
tial de-idealization improved the reliability of the measurement procedure but did
not remove all potential sources of error—indeed, it introduced additional potential
sources of error insofar as the measurement procedure now relies on the accuracy of
climate models. These new sources of error invited iterative improvements such as
the regularization procedure outlined in section 2. As in the original move to fin-
gerprinting, regularization involves a change to the measurement procedure that is
explicitly understood as aimed at a limited improvement to the reliability of the mea-
surement outcomes. That is, it’s explicitly understood that the resulting procedure,
while better, is still not perfectly reliable.

Regression. Our second example is similar. As before, the story begins with an
extremely simple and idealized model in which there is (a) the warming signal and
(b) noise. This model was complicated by the shift to a linear representation of the
the various factors involved in warming. This shift improved the overall reliability of
the results in that it allowed scientists to answer quantitative questions about the ori-
gins of climate change, but the resulting regression model was explicitly recognized as
containing additional remaining idealizations and thus additional potential sources
of error. And, as in the fingerprinting case, we saw scientists continuing to work
on improving the measurement procedure by iteratively introducing more complica-
tions into the statistical model. In more detail, though employing a representation

measurement.
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of the effects of individual causal factors (represented by the X terms) allowed cli-
mate scientists to make more reliable estimates of humanity’s overall contribution to
climate change, these representations are themselves uncertain, opening the door for
more complex treatments that better account for the potential of error in the final
measurement outcome due to a misrepresentation at this stage.

Of course, while the two cases outlined above are extremely similar to the case of
carbon dating discussed by Bokulich, there are a number of features of the climate
modeling case that don’t make it into the above summaries and deserve further
discussion.

First, and most notably, the changes discussed in this paper are changes to
specifically statistical elements of the measurement procedure. In particular, they’re
changes to the statistical model that’s used to distinguish between signal and noise.
That’s not to say that attribution studies have not benefited from the calibration of
other, more familiar, elements; they have. Rather, it’s to point out that the statistical
models employed in measurement can undergo changes similar to what we call cali-
brations in the context of physical instruments and theoretical models—and, further,
that these changes can be extremely valuable in improving the overall reliability of
the procedure.

The next section will discuss the implications of this first point in more detail,
but it is worth emphasizing one here: what’s going on in these cases is not improving
the statistical model qua representation—at least not primarily—but rather improv-
ing it qua component of the larger measurement process. So, for example, the move
from ΣM to ΣI is not driven by the thought that ΣI is a more accurate represen-
tation of the “true” internal variation than ΣM. If anything, ΣI is a less accurate
representation. Instead, what drives this change are worries about the mathematical
properties of ΣM and the errors that they can introduce into the final estimates.
In other words, while paradigmatic examples such as Bokulich’s carbon-dating case
involve theoretical corrections or alterations to physical instrumentation rather then
changes to the statistical model, the motivation for the present changes is the same
as we find there.

Second, and related, unlike what is the case in most paradigm cases of calibra-
tion, the changes found in the present examples were not driven by empirical work.15

Instead, the examples outlined above were motivated first and foremost by either (a)
a desire for quantitative answers where only qualitative answers were previously pos-
sible or (b) mathematical / statistical difficulties arising from specific idealizations.
Both of these motivations deserve a comment. On the first front, it’s an interesting

15That’s not to say that Bokulich and Tal don’t recognize a role for theoretical considerations in
calibration; see, e.g., Tal (2018, 642).
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question where calibration ends and simply measuring a different quantity begins.
It’s not obvious that scientists aiming to quantitatively estimate human contribu-
tions to climate change are using a “calibrated” version of the procedure employed
by scientists aiming for mere detection—there’s an argument to be made that these
are simply two different procedures. Of course, as Chang (2004) brings out, the same
questions arise in the context of thermometer development and, regardless, the an-
swer doesn’t really matter for my main point. Even if the moves to fingerprinting and
regression themselves are best understood as involving new measurement procedures
rather than changes to the old one, the subsequent move to regularized fingerprints
and more complex regression equations are much more in line with the paradigm
case. These refinements represent changes to a single measurement procedure—the
same quantity is being estimated using the same data (source) both before and af-
ter the refinement—that serves to make the resulting estimate more reliable. In this
respect, these refinements are exactly like Bokulich’s carbon-dating case.

The second motivation involves addressing specific mathematical or statistical
difficulties arising due to particular idealizations. As I’ll stress even more in the final
section, climate scientists seem to have never been deeply concerned with trying to
achieve a statistical model that perfectly represents what the statisticians gloss as
the process by which the data is in fact generated. At every juncture, the statistical
models have been understood to be heavily idealized. Only some of these idealizations
can be expected to seriously undermine the reliability of the measurement practice,
and it’s these specific idealizations that scientists have devoted their time to ad-
dressing. Notably, the aim here has not necessarily been to remove the problematic
idealization—that’s not what regularization does, for instance—but to neutralize it
as a potential source of error.

A final point worth emphasizing is that in the case of attribution studies, there’s
no centralized authority who fixes the way to measure human contribution to cli-
mate change.16 On the contrary, individual climate scientists decide which methods
to adopt in any particular study.17 The propagation of a technique like regularization
through the community can be slow, and sometimes new statistical models that seem
to show empirical promise are never universally adopted. So, for instance, Hunting-
ford et al. (2006) introduced a variation of the regression model that is less idealized

16On my understanding, this fact distinguishes the present case from some of those discussed by
Tal, but not the carbon dating case discussed by Bokulich (2020a).

17Note that the same authors often contribute to studies that employ different methods. So, for
instance, Gillett et al. (2021) runs a fairly standard attribution analysis in the mold discussed here;
two of its authors also contributed to Ribes, Qasmi, and Gillett (2021), which adopts a markedly
different Bayesian approach.
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than the one outlined above. It suffers, however, from being more difficult to carry
out, and climate scientists seem to have largely decided that it’s better—because
both less labor-intensive and less reliant on questionable auxiliary assumptions—to
achieve the same effect by carrying out multiple regressions and effectively averaging
over the results (see Hegerl et al. 2019; Schurer et al. 2018). But the decision-making
process here is extremely decentralized.

It seems to me that these differences between the changes to the statistical models
used in attribution studies and the paradigm cases of calibration are not significant
enough to prevent us from extending the concept of calibration to the former. At
its most basic, calibration (in Bokulich’s sense) involves altering how we estimate
some quantity in such a way that the refined procedure is understood to gener-
ate more accurate or precise estimates of the same quantity. This is precisely how
climate scientists understand the alterations surveyed in the prior sections: the re-
finements involved in fingerprinting, regularization, and regression are taken to allow
for tests that generate more reliable estimates for humanity’s contribution to climate
change than were previously possible. What’s changed is simply which element of
the measurement process is being adjusted: the examples discussed above show that
calibration—or at least something like it—can also involve changes to the inferential
tools employed in the measurement process. Even if we want to restrict “calibration”
to the more limited phenomenon, therefore, the cases discussed in this paper share
a kinship with paradigm cases of calibration.

This kinship matters. If the statistical tools employed in measurement procedures
undergo changes like those found in traditional cases of calibration and if, further,
we want to be able to evaluate whether these changes are successful, then we need
some account of what makes one statistical model better than another. I turn to this
problem now.

5 Evaluating statistical models

The prior four sections have outlined how the statistical models employed in attri-
bution studies have been continually refined over the last three decades in a process
that should be understood as a kind of calibration. This final section turns to the
evaluation of statistical models and shows that recent accounts of model evaluation—
accounts that focus on the adequacy of the model for a particular purpose or task—
can be extended to neatly account for the calibration of statistical models. On the
view that I’ll defend, what makes for a good statistical model is whether (and to
what degree) it allows for reliable inferences from (actual) data to the quantity of
interest. A statistical model is capable of fulfilling this function to the extent that
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it accurately represents the relationship between hypotheses and data. But accuracy
in other, deeper, senses is largely irrelevant: if the statistical model gets the prob-
abilities right, it doesn’t matter if it misrepresents the actual mechanisms of data
generation (say). What makes calibration successful, then, is if the changes to the
statistical model improves the representation of the probabilities.

In many domains, good statistical practice means designing experiments to fit
a given statistical model; this is the idea behind randomized control trials, for in-
stance.18 In attribution studies, however, the data is produced by a natural exper-
iment that we have little ability to physically control. The upshot is that climate
scientists have to mold their statistical models to fit the structure of the experiment
that actually exists rather than the other way around. As we’ve seen, this a continuing
and iterative process: over time, the standard or typical statistical model employed
in attribution studies has been improved by the refinements outlined above.

If we begin from a perspective on statistics motivated by the first type of case—
where the goal is physically controlling the experiment so that it best approximates a
true random distribution—a natural question arises regarding the second type of case:
how should we judge whether (or to what degree) the calibration process discussed
in the prior sections is successful? Or, more simply, what makes for a good statistical
model of a non- (or only partially) randomized process? The natural answer to this
question would be that a good statistical model is just one that accurately represents
the relationship between the data and the target quantity. Calibration would then
be a matter of building a more accurate model. But by this metric, every one of
the statistical models surveyed above is a failure: all of them are heavily idealized.
Worse, at least some of the alterations surveyed above don’t seem to actually make
the models more realistic—or at least, they do so only incidentally. Regularization,
for example, has been widely adopted even though ΣI is no more accurate than ΣM

qua representation of the “true” covariance matrix. And if the statisticians are to be
believed, the same is true to a greater or lesser extent of statistical models generally:
they always involve at least some degree of idealization.

As Mayo has pointed out, the refrain that all models are false—while true so
far as it goes—isn’t really informative; it doesn’t tell us “how statistical models
may be used to infer true claims about problems of interest” (Mayo 2018, 296). On
Mayo’s view, a statistical model is “adequate for a problem of statistical inference”
(Mayo 2018, 297) if it allows scientists to thoroughly test or “probe” the hypotheses
in question. For Mayo, who prefers a classical approach, this means that a well-
designed statistical model is one that makes it suitably difficult for a false hypothesis

18See Worrall (2002) and Zhao (2021) for discussion and criticism of this view in the social and
life sciences.
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to pass the test (Mayo 1996, 178). She suggests that such models “approximate” the
real world in some way (Mayo 2018, 296–97), but there’s no guarantee that better
approximations will lead to models that are better for statistical testing—indeed,
given that “no useful models are true” (Mayo 2018, 297), it can’t be that usefulness
always increases with accuracy.

Mayo’s view fits nicely with the recent literature on model evaluation, which
stresses that models should not in general be evaluated in terms of completely accu-
rate representation of the target system.19 As Bokulich (2020b) emphasizes, models
are used for a variety of different purposes: sometimes, the role of a model is to
represent the target as accurately as possible; in other contexts, however, the model
might be used (e.g.) as a control in an experiment testing the effects of some inter-
vention. In these cases, as I put it in Dethier (2021), the model is less like a truth-apt
proposition and more like a reliability-apt tool: the appropriate question is whether
it reliably or adequately performs the role that it has been tasked with. (Or, better:
whether it performs its role in a way that renders the relevant procedure as a whole
reliable.) Since, on this picture, models are treated as tools or instruments rather
than representations, I’m going to borrow a term from Knuuttila (2011) and call the
family of views of model evaluation defended in this literature “artefactual.” More
precisely, a view of model evaluation is “artefactual” iff it says that the quality of
a model is determined by how well it performs a particular function in a particular
context.

What properties do the statistical models involved in attribution studies have to
have in order to fulfil their function of licensing inferences from data to hypothe-
ses about the causes of climate change? Or, in Mayo’s terminology, what properties
must they have to facilitate the severe or thorough testing of hypotheses about the
past? Ultimately, and regardless of whether we’re employing a Bayesian or classi-
cal approach, whether or not a hypothesis passes a statistical test depends on the
likelihood relationship between said hypothesis and the observed data.20 In order to
fulfil their function, therefore, the statistical models employed in attribution stud-
ies must accurately represent these likelihoods: a model that accurately represents

19See the work of Bokulich and Parker in particular (e.g. Bokulich 2021; Bokulich and Parker
2021; Parker 2009, 2020b) as well as Currie (2017) and Dethier (2021).

20There are sometimes other factors in both the classical and Bayesian context. For classical
statistics, for instance, we also need to capture the probability of more “extreme” data that could
have been observed; in the Bayesian case, we want to know the prior probability distribution. My
point here is only that accurate representation of the mechanisms that generate these probabilities
are unimportant. Spanos makes essentially the same point in arguing that “the only thing that mat-
ters ... is whether the data x can be realistically be viewed” as a typical outcome of the probabilistic
process given by the model (Spanos 2006, 100). See also Dethier (2022) and Sprenger (2019).
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the likelihood of the data on various hypotheses will license the right inferences re-
gardless of whether or not it accurately represents how the data are generated in
any deeper sense. And, thus, thoroughly testing a hypothesis in (roughly) Mayo’s
sense involves showing that the statistical model employed accurately represents the
relevant likelihoods.21

As stressed by the literature on model evaluation more generally (see, e.g., Dethier
2021; Parker 2020b), the quality of a model usually depends on contextual factors;
the same is true here. Because attribution studies rely on both actual data and
information from climate models, the relevant context for attribution studies consists
of (at least) the character of the data sets and climate models available. For instance,
a statistical model that is perfectly suited for cases in which our climate models are
infinitely accurate is not one that is well-suited for the actual conditions that we find
ourselves in. As we saw above, much of motivation for changes to statistical models
arises from the imperfect nature of the climate models employed in estimating various
quantities.

Though the view just sketched is relatively abstract—see Parker (2020b) for one
detailed way of precisifying the general artefactual picture—it neatly accounts for
much of the behavior of climate scientists in the calibration of statistical models.
Artefactual views of model evaluation require that statistical models are appropri-
ately catered to the particularities of the context in which they are being used.
Statistics is not a one-size-fits-all science: we can’t use the same statistical model
in every case, because which statistical model (or models) are appropriate depends
on (among other things) the actual relationship between the data and the target
of inference (compare Mayo 1996, 447–49). The statistical model that is appropriate
when our data are genuinely randomly distributed around the target quantity is very
different from the one we need in attribution contexts, where the data have a much
more complicated relationship with the target we want to estimate. As a result, in
ongoing projects such as the attribution of climate change, it’s unsurprising that we
would find both (a) that the early statistical models were rather simple first approx-
imations based on general principles and poorly tailored to the specifics of the case
and (b) that there exists a process of calibration in which these models are rendered
increasingly well-suited for the particular task.

21I suspect Mayo would object to this gloss—and rightly so insofar as it implies either that a
good model yields an “automatic” pass or reject rule or that there’s no room for the kind of local
questions that go “beyond statistical methodology, as traditionally conceived” (Mayo 1996, 449). I
don’t intend either implication, however: though this hasn’t been the focus in this essay, Mayo is
right to stress how much non-statistical work goes into showing that a given model is adequate. See
also Spanos (2006).
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Artefactual views also entail that idealizations are problematic only insofar as
they undermine the ability of the model to perform its assigned task. As we saw
in the discussion of regularization, one way that the project of attribution can go
wrong is if the estimate for internal variation (ΣM) is ill-conditioned in the sense
that it can’t be inverted without introducing substantial uncertainty. Notice that
this problem isn’t purely representational; the problem isn’t really that treating ΣM

as though it were an accurate representation of the true internal variation is an
idealization, but rather that this specific idealization introduces technical problems
for the calculation of the detector statistic. That is: this idealization is considered
worrying precisely because it inhibits the ability of the statistical model to generate
accurate likelihood values (compare Mayo 2018, 296).

It’s worth reiterating that the different solutions that climate scientists suggested
to resolve this problem did not involve eliminating the idealization, but rather neu-
tralizing it as a source of error. The first of these methods was truncating ΣM. The
truncated form of ΣM is not a more accurate representation of the true internal
variation than the non-truncated form; if anything, it is less accurate. Similarly, the
move from truncation to regularization was motivated primarily by two desires: (a)
to better solve the technical problem that motivated truncation in the first place and
(b) to reduce the imprecision introduced by the (semi-)arbitrary choice of truncation
level k. It’s telling, in this respect, that (to my knowledge) no attempts have been
made to either truncate or regularize representations of internal variation elsewhere
in the statistical model. The simple explanation is that covariance matrices involved
in fixing the distribution of random variables like vD are not inverted, and so the
technical problem does not arise.22 The misrepresentation of the internal variation
in these cases doesn’t matter (as much) for the purposes that the model is put to.23

Finally, recall again the contextual character of model evaluation on artefactual
views. From a purely conceptual perspective, we can distinguish between three dis-
tinct components of a measurement(-like) procedure: the physical instruments that
deliver the data, the theoretical understanding of the target that makes the data

22As Mayo emphasizes, errors—and thus the strategies for neutralizing them—should be individ-
uated at a relatively fine grain when evaluating methodology (see, e.g., Mayo 1996, 19); an error
owed to matrix inversion is different from an error owed to bad data because they have different
implications and can be rectified in different ways.

23How can we justify our conviction that calibration efforts improve inferential accuracy without
appealing to representational accuracy? Both of the cases surveyed here seem to have been initially
motivated on theoretical grounds—there are reasons to expect an increase in inferential accuracy
by making the change—which were then bolstered by comparing the performance of the different
methods against data with known properties (see, e.g., Hannart, Ribes, and Naveau 2014; Ribes,
Planton, and Terray 2013).

21



meaningful, and the statistical model that connects the two. In measurement, the
goal is to use the data to fill in or update the theoretical understanding; a successful
measurement procedure relies on having good (enough) instruments and data, good
(enough) prior theoretical understanding to determine what the data are telling us,
and good (enough) statistical models to carry out the inference. On artefactual views,
the quality of each of these elements cannot properly be judged separately from the
others: whether the statistical model is “adequate” for the particular measurement
procedure depends on the nature of the instruments and theory that are actually in
place (compare Parker 2020b, 463; Dethier 2021, 1462–63). So while there’s a concep-
tual distinction between these three elements, they are deeply interconnected both
causally—our theoretical understanding partly determines which statistical models
we use—and for evaluative purposes.

The problem that motivates this paper is how to evaluate the changing character
of statistical models: what makes one model better than another? On the artefactual
view sketched here, the answer to this question in the context of climate change
attribution is that a model is better insofar as it allows for more accurate and precise
estimates of human contributions to climate change within the context of the actual
data and background knowledge—that is, the climate models—available. In effect,
it’s a matter of how accurately the model captures the probabilistic relationship
between this data and hypothesis given that background information. Taking this
artefactual view helps us understand the calibration (or calibration-like) process that
the statistical models employed in climate change attribution have undergone over
the last three decades: what climate scientists are doing is effectively tailoring one
of their instruments to allow for increasingly precise and accurate estimates of the
quantity they want to measure. What separates this case from more familiar instances
of calibration is simply that the instrument in question is a statistical model instead
of a thermometer.

Adopting this view also makes it clear how climate scientists can justify using
statistical models that they nevertheless think can be improved. On the artefactual
view, a statistical model can be improved just in case it’s possible to increase either
the precision or the accuracy of the measurement outcomes that it is used to generate.
Climate scientists are therefore justified in using sweeping idealizations such as those
surveyed in the first section so long as they’re careful to account for the imprecision
or inaccuracy that this use introduces. From this perspective, a model may both
be “adequate” in that it warrants the conclusion given and simultaneously in need
of improvement insofar as the conclusion given is not as precise or accurate as we
would like it to be. The context-sensitivity of the artefactual view thus not only
captures the calibration of statistical models, it explains why climate science doesn’t
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need to wait for that calibration process to complete before delivering at least some
conclusions.

6 Conclusion

In this paper, I’ve discussed the development of attribution studies in climate sci-
ence, and particularly how the statistical models employed in attribution studies
have changed over the last three decades. The primary upshot of this discussion is
that these changes should be viewed as a kind of calibration process: they’re itera-
tive revisions to a measurement(-like) procedure motivated primarily by the aim of
neutralizing particularly troublesome sources of error or uncertainty.

To make sense of calibration in the context of statistics, it’s important to rec-
ognize that statistics is flexible: because statistics can be applied in a wide variety
of contexts, our statistical models must be tailored to the context that we actually
find ourselves in. To this end, I’ve argued for the extension of what I’ve called “arte-
factual” views of model evaluation to the statistical case: what makes a statistical
model good, on this view, is that it is well-tailored to the particular purpose to which
it is put. Once we recognize that for the purposes of evaluation statistical models are
more akin to tools than to propositions it becomes clearer why climate scientists have
focused their calibration efforts on particular elements of the statistical models and
why they’ve consistently used these models while recognizing that they are idealized
and imperfect.
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